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Abstract

The problem studied in this paper is that of a coated semi-infinite plane subjected to a concentrated force in the

upper thin layer (or film). The elastic properties of the coating material are different from those of the substrate, and a

perfect bond is assumed between the two materials. The exact solutions of stress functions in a series form are obtained

by the method of image. The terms in series form of the stress functions correspond to the image points from the lower

order to the higher. The recurrence relations of the stress functions are given, i.e., the stress functions corresponding to

the higher order image points are determined by the lower ones. Hence, from the original stress functions for an infinite

plane subjected to a concentrated force, the explicit formulas of all terms of the stress function series can be derived.

Also, through comparisons between the theoretical results and the numerical results by FEM, it is verified that the

convergence rate of the solutions is very rapid. In most practical cases only the first several image points are sufficient to

ensure the accuracy of the solutions.
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1. Introduction

In order to improve the surface properties, modern material technology very often requires the substrate

material to be coated with one thin film or layer. Due to the extensive applications of the film technology in
industries, the studies of interface strength about this kind of bimaterial have been of great scientific
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interests. Varias et al. (1999) simulated the transient problem of film buckling and interfacial failure using a

numerical method. Balkan and Madenci (1998) analyzed the response of a thin film over a substrate with

circular debonding under thermal loading. Wei and Hutchinson (1998) proposed and analyzed a cohesive

zone model for steady-state peeling of thin, rate-independent, and elastic–plastic film bonded to an elastic
substrate.

In this paper, we model the surface-modified material as a bonded dissimilar material with a free surface,

and focus on the theoretical solutions for concentrated forces in the surface layer (or film) through the

image method, based on the previous work done by Xu et al. (2002), in which the theoretical solution of a

concentrated force on the free surface of coating material was obtained by the image method.

It can be found that the idea of the image method to deal with the solid mechanics problem has been

reported in early times, starting from the problem of infinite isotropic body subjected to a concentrated

force solved by Timoshinko and Goodier (1987). For bonded dissimilar materials, the method of image has
also been used. Dundurs and Het�enyi (1961), Het�enyi and Dundurs (1962) obtained the closed-form

solutions of the elastic plane with a circular inserted by this method in terms of Ariy stress functions for an

infinite plane with a point force. In recent years, a number of works on bimaterials have been done to

analyze the stress fields through the image method. Ting (1992) presented simple explicit expressions of

Green’s functions for anisotropic elastic half-spaces and bimaterials subjected to line forces and line dis-

locations, and discussed the image singularities of the Green’s functions. Aderogba (2000, 2003) established

a theorem for generating the Airy stress function for trimaterial due to a point force utilizing the method of

image. Ma and Lin (2001) found that the fundamental solutions required to construct all the image
singularities of applied forces and dislocations for the half-space are only forces and dislocations and

their differentiations in the infinite space. Wu et al. (2002) obtained the exact solutions for interfacial

edge dislocations in an anisotropic bicrystal under plane strain by the method of image dislocations.

In the present study, due to the free surface and interface, an infinite series of images are produced from

the point where the load is applied. The two dimensional solution is deduced in detail by using the infinite

series of the Goursat’s stress functions corresponding to each image point. It is found that the stress

functions corresponding to higher order image points can be determined from those corresponding to lower

ones, therefore, all of the stress functions can be determined starting from the stress functions corre-
sponding to the first order image point which is in fact the stress functions for a infinite plane subjected to a

concentrated force. Also, it is verified that the first several image points have major influence on the

accuracy of the theoretical solution for most practical cases of materials combination.
2. Analytical model

A bonded dissimilar material with a free surface is considered, as shown in Fig. 1(a). The point force

applies in the upper thin layer (or film), denoted by material ‘I’, of which the thickness is ‘h’, shear modulus

l1, and Poisson’s ratio m1. The substrate denoted by material ‘II’ is a half-infinite plane, of which the shear

modulus is l2 and Poisson’s ratio m2. The global coordinate is set as originating at the load point.
It is convenient to classify the image points into two series. First series of the image points are shown as

Fig. 1(b). Firstly, an image point is produced by the free surface and then reflected by the interface, and so

on, resulting in a series of infinite image points. The second series of infinite image points are shown as Fig.

1(c). Firstly, an image point is produced by the interface and then reflected by the free surface, and so on,

also resulting in a series of infinite image points.

In Fig. 1(b), the image points above the free surface are denoted by Oi, and the corresponding local

coordinates are expressed by complex form as zk ¼ xþ iyk1. The image points beneath the interface are

denoted by Ci , the corresponding local coordinates: 1k ¼ xþ iyk2. The relationship between the local
coordinates and the global coordinates are:



Fig. 1. (a) Analytical model; (b) first series of image points; (c) second series of image points.
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z ¼ xþ iy; �z ¼ x� iy; i ¼
ffiffiffiffiffiffiffi
�1

p

zk ¼ z� 2d½ þ 2ðk � 1Þh�i
1k ¼ zþ 2khi

ð1Þ
In Fig. 1(c), image points above the free surface are denoted by Ai, and local coordinates: gk ¼ xþ iyk3. The

image points beneath the interface are denoted by Bi, the corresponding local coordinates: nk ¼ xþ iyk4.
The relationship between the local coordinates and the global coordinates can be expressed as:
nk ¼ zþ ð2kh� 2dÞi
gk ¼ z� 2khi

ð2Þ
The continuity conditions at the interface are:
ryI þ isxyI ¼ ryII þ isxyII
uI þ ivI ¼ uII þ ivII

at y ¼ �ðh� dÞ ð3Þ
The boundary condition of tractions free at the free surface can be written as:
ryI þ isxyI ¼ 0 at y ¼ d ð4Þ
3. Recurrence relationships of stress functions

3.1. Goursat stress function

Goursat complex stress functions for plane problem can be expressed as:
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ry þ isxy ¼ u0 þ �u0 þ �zu00 þ w0; rx þ ry ¼ 4Re u0� �
2l uð þ ivÞ ¼ ju � z�u0 � w

ð5Þ
where
j ¼ 3 � 4m for plane strain

j ¼ 3 � mð Þ= 1 þ mð Þ for plane stress

�
ð6Þ
From the variable relations in Eqs. (1) and (2) one can get:
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ð7Þ
Set the stress functions as the following:
uI ¼ FIðzÞ þ
P1

k¼1½AkðzkÞ þ BkðfkÞ þ CkðnkÞ þ DkðgkÞ�
wI ¼ fIðzÞ þ

P1
k¼1½akðzkÞ þ bkðfkÞ þ ckðnkÞ þ dkðgkÞ�

�
ð8Þ
uII ¼ FII zð Þ þ
P1

k¼1½FkðzkÞ þ GkðgkÞ�
wII ¼ fII zð Þ þ

P1
k¼1½fkðzkÞ þ gkðgkÞ�

�
ð9Þ
Here, FI, fI, FII, fII, Ak––Dk and ak––dk, are all complex-variable analytic functions. The functions uI, wI, uII

and wII correspond to materials ‘I’, ‘II’, respectively.

3.2. Stress functions recurrence for image points symmetric to the interface

At the interface:
z ¼ x� ðh� dÞi; zk ¼ 1k; nkþ1 ¼ gk ð10Þ
Substituting the stress functions expressed by Eqs. (8) and (9) into the continuity conditions of Eq. (3) and

considering the corresponding relationships of the image points yields
F 0
I þ F 0

I þ ½xþ ðh� dÞi�F 00
I þ f 0

I þ C0
1 þ C0

1 þ ½xþ ðh� dÞi�C00
1 þ c01 ¼ F 0

II þ F 0
II þ ½xþ ðh� dÞi�FII þ f 0

II

A0
k þ B0

k þ A0
k þ B0

k þ ½xþ ðh� dÞi�½A00
k þ B00

k � þ a0k þ b0k ¼ F 0
k þ F 0

k þ ½xþ ðh� dÞi�F 00
k þ f 0

k

C0
kþ1 þ D0

k þ C0
kþ1 þ D0

k þ ½xþ ðh� dÞi�½C00
kþ1 þ D00

k � þ c0kþ1 þ d 0
k ¼ G0

k þ G0
k þ ½xþ ðh� dÞi�G00

k þ g0k

C j1FI

n
� ½x� ðh� dÞi�F 0

I � fI þ j1C1 � ½x� ðh� dÞi�C0
1 � c1

o
¼ j2FII � ½x� ðh� dÞi�F 0

II � fII

C j1 Ak½
n

þ Bk� � ½x� ðh� dÞi� A0
k

h
þ B0

k

i
� ak � bk

o
¼ j2Fk � ½x� ðh� dÞi�F 0

k � fk

C j1 Ckþ1½
n

þ Dk� � ½x� ðh� dÞi� C0
kþ1

h
þ D0

k

i
� ckþ1 � dk

o
¼ j2Gk � ½x� ðh� dÞi�G0

k � gk

ð11Þ
Here, C ¼ l2=l1. Noting that, at the interface z ¼ x� ðh� dÞi, using this condition the two sides in the
equations of Eq. (11) can be rearranged into the forms of harmonic functions. At the same time, by

conjugating the two sides of the expressions of displacements, one can get:
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A0
k þ A0

k þ ½zþ 2ðh� dÞi�A00
k þ a0k � F 0

k

h
þ F 0

k þ ½zþ 2ðh� dÞi�F 00
k þ f 0

k

i
¼ � B0

k

h
þ B0

k þ ½zþ 2ðh� dÞi�B00
k þ b0k

i
C j1

�Ak

n
� ½zþ 2ðh� dÞi�A0

k � ak
o
� j2

�Fk

h
� ½zþ 2ðh� dÞi�F 0

k � fk
i

¼ �C j1
�Bk

n
� ½zþ 2ðh� dÞi�B0

k � bk
o

ð12Þ

F 0
I þ F 0

I þ ½zþ 2ðh� dÞi�FI þ f 0
I � F 0

II

n
þ F 0

II þ ½zþ 2ðh� dÞi�FII þ f 0
II

o
¼ � C0

1

h
þ C0

1 þ ½zþ 2ðh� dÞi�C00
1 þ c01

i
C j1

�FI

n
� ½zþ 2ðh� dÞi�F 0

I � fI

o
� j2

�FII

n
� ½zþ 2ðh� dÞi�F 0

II � f 0
II

o
¼ �C j1C0

1

h
� ½zþ 2ðh� dÞi�C0

1 � c1

i
ð13Þ

D0
k þ D0

k þ ½zþ 2ðh� dÞi�D00
k þ d 0

k � G0
k

n
þ G0

k þ ½zþ 2ðh� dÞi�G00
k þ g0k

o
¼ � C0

kþ1

n
þ C0

kþ1 þ ½zþ 2ðh� dÞi�C00
kþ1 þ c0kþ1

o
C j1

�Dk

n
� ½zþ 2ðh� dÞi�D0
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o
� j2

�Gk

n
� ½zþ 2ðh� dÞi�G0

k � gk
o

¼ �C j1
�C0
kþ1

n
� ½zþ 2ðh� dÞi�C0

kþ1 � ckþ1

o
ð14Þ
Based on the interchange theorem, at the interface, we have:
oL
ozk

¼ oR
o1k

;
oL
ozk

¼ oR
o1k

;
oL

onkþ1

¼ oR
ogk

;
oL

onkþ1

¼ oR
ogk

ð15Þ
and
oL
on1

¼ oR
oz

;
oL

on1

¼ oR
oz

ð16Þ
where, L and R represent the left- and right-hand side of a equation like Lðx; yÞ ¼ Rðx; yÞ, respectively. Using
Eqs. (15) and (16), from Eqs. (12)–(14) one can get:
Fk ¼
C 1 þ j1ð Þ
C þ j2

Ak

fk ¼
C j1 þ 1ð Þ
Cj1 þ 1

� C j1 þ 1ð Þ
C þ j2

� �
zþ 2 h� dð Þi½ �A0

k þ
C j1 þ 1ð Þ
Cj1 þ 1

ak

8>><
>>: ð17aÞ

Bk ¼
C � 1

Cj1 þ 1
zA0

k þ ak
h i

bk ¼
Cj1 � j2

C1 þ j2

�Ak þ
1 � C

Cj1 þ 1
z zþ 2ðh� dÞi½ �A00

k þ zþ 2 h� dð Þi½ � A0
k þ a0k

� �n o
8><
>: ð17bÞ

FII ¼
C 1 þ j1ð Þ
C þ j2

FI

fII ¼
Cðj1 þ 1Þ
Cj1 þ 1

� Cðj1 þ 1Þ
C þ j2

� �
zþ 2ðh� dÞi½ �F 0

I þ
C j1 þ 1ð Þ
Cj1 þ 1

fI

8>><
>>: ð17cÞ
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C1 ¼
C � 1

Cj1 þ 1
zF 0

I þ �fI

h i
c1 ¼

Cj1 � j2

C1 þ j2

�FI þ
1 � C

Cj1 þ 1
z zþ 2 h� dð Þi½ �F 00

I þ zþ 2 h� dð Þi½ � F
0
I þ f

0
I

� �n o
8><
>: ð17dÞ

Gk ¼
C 1 þ j1ð Þ
C þ j2

Dk

gk ¼
C j1 þ 1ð Þ
Cj1 þ 1

� C j1 þ 1ð Þ
C þ j2

� �
zþ 2 h� dð Þi½ �D0

k þ
C j1 þ 1ð Þ
Cj1 þ 1

dk

8>><
>>: ð17eÞ

Ckþ1 ¼
C � 1

Cj1 þ 1
zD0

k þ dk

h i
ckþ1 ¼

Cj1 � j2

C1 þ j2

�Dk þ
1 � C

Cj1 þ 1
z zþ 2 h� dð Þi½ �D00

k þ zþ 2 h� dð Þi½ � D0
k þ d

0
k

� �n o
8><
>: ð17fÞ
When Ak and ak are known, other functions can be obtained. Using Dundur’s parameters, i.e.:
a ¼ l1 j2 þ 1ð Þ � l2 j1 þ 1ð Þ
l1 j2 þ 1ð Þ þ l2 j1 þ 1ð Þ ; b ¼ l1 j2 � 1ð Þ � l2 j1 � 1ð Þ

l1 j2 þ 1ð Þ þ l2 j1 þ 1ð Þ ð18Þ
the equations of recurrence can be rewritten as:
Fk ¼
1 � a
1 þ b

Ak

fk ¼
2 1 � að Þb

1 � b2
zþ 2 h� dð Þi½ �A0

k þ
1 � a
1 � b

ak

8>><
>>: ð19aÞ

Bk ¼
b � a
1 � b

zA
0
k þ ak

h i
bk ¼ � a þ b

1 þ b
Ak þ

a � b
1 � b

z zþ 2 h� dð Þi½ �A00
k þ zþ 2 h� dð Þi½ � A0

k þ a0k
� �n o

8>><
>>: ð19bÞ

FII ¼
1 � a
1 þ b

FI

fII ¼
2 1 � að Þb

1 � b2
zþ 2 h� dð Þi½ �F 0

I þ
1 � a
1 � b

fI

8>><
>>: ð19cÞ

C1 ¼
b � a
1 � b

zF 0
I þ fI

h i
c1 ¼ � a þ b

1 þ b
�FI þ

a � b
1 � b

z zþ 2 h� dð Þi½ �F 00
I þ zþ 2 h� dð Þi½ � F 0

I þ f 0
I

� �n o
8>><
>>: ð19dÞ

Gk ¼
1 � a
1 þ b

Dk

gk ¼
2 1 � að Þb

1 � b2
zþ 2 h� dð Þi½ �D0

k þ
1 � a
1 � b

dk

8>><
>>: ð19eÞ

Ckþ1 ¼
b � a
1 � b

zD0
k þ dk

h i
ckþ1 ¼ � a þ b

1 þ b
Dk þ

a � b
1 � b

z zþ 2 h� dð Þi½ �D00
k þ zþ 2 h� dð Þi½ � D0

k þ d 0
k

� �n o
8>><
>>: ð19fÞ
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Note that the above recurrence relations are derived via the continuity condition at the interface. In the next

section, traction-free condition at the surface will be discussed and the other stress functions recurrence

relationships will be derived.

3.3. Stress functions recurrence for image points symmetric to surface

At the free surface, we have:
z ¼ xþ di; zkþ1 ¼ 1k; nk ¼ gk ð20Þ

Applying the following interchange theorem
oL
ozkþ1

¼ oR
o1k

;
oL

ozkþ1

¼ oR
o1k

;
oL
onk

¼ oR
ogk

;
oL

onk

¼ oR
ogk

ð21Þ
and
oL
oz1

¼ oR
oz

;
oL
oz1

¼ oR
oz

ð22Þ
substituting Eqs. (8) and (9) into Eq. (3), considering the corresponding relationships of the image points,

the following expressions can be obtained:
F 0
I þ F 0

I þ ðx� diÞF 00
I þ f 0

I þ A0
1 þ A0

1 þ ðx� diÞA00
1 þ a01 ¼ 0

A0
kþ1 þ B0

k þ A0
kþ1 þ B0

k þ ðx� diÞ½A00
kþ1 þ B00

k � þ a0kþ1 þ b0k ¼ 0

C0
k þ D0

k þ C0
k þ D0

k þ ðx� diÞ½C00
k þ D00

k � þ c0k þ d 0
k ¼ 0

ð23Þ
Applying z ¼ xþ di, the above expressions can be rewritten as the following harmonic functions:
A0
1 þ A0

1 þ ðz� 2diÞA00
1 þ a01 ¼ � F 0

I

h
þ F 0

I þ ðz� 2diÞF 00
I þ f 0

I

i
A0
kþ1 þ A0

kþ1 þ ðz� 2diÞA00
kþ1 þ a0kþ1 ¼ � B0

k

h
þ B0

k þ ðz� 2diÞB00
k þ b0k

i
D0

k þ D0
k þ ðz� 2diÞD00

k þ d 0
k ¼ � C0

k

h
þ C0

k þ ðz� 2diÞC00
k þ c0k

i ð24Þ
Employing the relationships shown in Eq. (21), the recurrence relationships of the stress functions can be

obtained as:
Akþ1 ¼ �z�B0
k � �b0k

akþ1 ¼ ðz� 2diÞ�B0
k � �Bk þ zðz� 2diÞ�B00

k þ ðz� 2diÞ�b0k

8<
: ð25aÞ

A1 ¼ �z�F 0
I � �fI

a1 ¼ ðz� 2diÞ�F 0
I � �FI þ zðz� 2diÞ�F 00

I þ ðz� 2diÞ�f 0

8<
: ð25bÞ

Dk ¼ �z�C0
k � �ck

dk ¼ ðz� 2diÞ�C0
k � �Ck þ zðz� 2diÞ�C00

k þ ðz� 2diÞ�c0

8<
: ð25cÞ
Let us define:
FI zð Þ ¼ N log z; fI zð Þ ¼ �j1
�N log z; N ¼ � Px þ iPy

2p j1 þ 1ð Þ ð26Þ
Actually, FI, fI are the stress functions for the unbounded homogeneous plane under a concentrated force.
Substituting Eq. (26) into Eqs. (19d) and (25b) the functions C1, c1, A1 and a1 can be obtained. Based on

these functions, the other stress functions terms can be derived using Eqs. (19a), (19b), (19c), (19e), (19f),
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(25a) and (25c). This method is simple and straightforward but a little inconvenient. The more effective way

is to set each stress function as a polynomial form and then using the recurrence relationships to derive the

general formulas (see Appendix A). Actually, from the final recurrence relationships in polynomial forms

the coefficients can be solved using mathematical software like MATLABMATLAB, MATHAMATICAMATHAMATICA or MAPLEMAPLE.
4. Comparisons of the theoretical solutions to the results of FEM

In order to show the validity of the above theories, FEM computations also have been carried out. The

FEM model adopted here is shown in Fig. 2. Since the film is very thin and the actual theoretical problem is

about half-infinite plane, the dimensions of the substrate must be very large compared to the upper thin

layer. The finite element mesh is shown in Fig. 3. The materials constants are given in Table 1. Here, the
Fig. 2. FEM analysis model.

Fig. 3. FEM element division (element: 45677, node: 37812).



Table 1

Materials constant

Material I II

Young’s modulus E (Gpa) 546 206

Poisson’s ratio m 0.3 0.3

Fig. 4. (a) Normal stress ry for Px ¼ 0, Py ¼ 1 N/mm; (b) shear stress sxy for Px ¼ 0, Py ¼ 1 N/mm.
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distance between the load point and the free surface is 0.5 mm. Generally, the stresses along the interface
are most important. Thus, interface stresses comparisons of four cases between the theoretical and

numerical results from FEM are performed, shown in Figs. 4 and 5.

In the legends of the figures, n ¼ k denotes the order of image point. From comparisons to the results of

FEM, it can be found that the stress increments decrease rapidly as the order of the image points increases.

And the stresses resulting from superimposing five image points have enough accuracy for the materials

combination in the Table 1. These imply that the convergence rate of the theoretical solutions is very fast.
5. Effects of combination of materials

In the Section 4, the theoretical and numerical results are compared. We can see that the stress incre-
ments corresponding to the higher order image points decrease rapidly. Therefore for practical problem, a



Fig. 6. Required order for different Young’s modulus.

Fig. 5. (a) Normal stress ry for Px ¼ 1 N/mm, Py ¼ 0; (b) shear stress sxy for Px ¼ 1 N/mm, Py ¼ 0.

7084 Y. Li et al. / International Journal of Solids and Structures 41 (2004) 7075–7089
few terms of stress functions are sufficient to ensure the accuracy. In this section, the effects of the difference

between the material properties will be discussed. Here, assume Poisson’s ratios as m1 ¼ m2 ¼ 0:3. The re-

quired orders for different Young’s modulus are calculated and the results are shown in Fig. 6. From the

curve, it can be seen that when the mismatch between the Young’s modulus is bigger, the more image points

are needed to get satisfactory accuracy.
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6. Conclusions

Through the image method, the theoretical solutions are obtained for modified material subjected to a

concentrated force in the upper layer, the conclusions are:

1. Theoretical stress functions corresponding to each image point, from the lower order to higher, exhibit

recurrence relations, and the final solution is an infinite series.

2. The stresses increments decrease rapidly when the order of image points is higher. It implies that the con-

vergence rate of the solutions is very rapid.

3. The distributions of stresses at the interface are most important. Generally, for most practical materials

combination, only five image points are needed to get satisfactory accuracy.

4. If the material properties between the upper layer and the substrate are very different, more image points
are needed to ensure the accuracy of the theoretical solution.

Appendix A. Recurrence relationships of stress functions

Dundur’s parameters:
a ¼ l1 j2 þ 1ð Þ � l2 j1 þ 1ð Þ
l1 j2 þ 1ð Þ þ l2 j1 þ 1ð Þ ; b ¼ l1 j2 � 1ð Þ � l2 j1 � 1ð Þ

l1 j2 þ 1ð Þ þ l2 j1 þ 1ð Þ ðA:1Þ
Let us define:
m1 ¼
b � a
1 � b

; m2 ¼
a þ b
1 þ b

ðA:2Þ
The expressions of recurrence in Eqs. (19a)–(19f), (25a)–(25c) can be rearranged as:
Fk ¼ 1ð � m2ÞAk

fk ¼ m1ð þ m2Þ zkð þ 2khiÞA0
k þ m1ð þ 1Þak

ðA:3Þ

Bk ¼ m1b 1kð � 2khiÞ�A0
k þ �akc

bk ¼ �m2
�Ak � m1 1kð

n
� 2khiÞ 1k½ � 2khi þ 2 hð � dÞi��A0

k þ 1k½ � 2khi þ 2 hð � dÞi� �A0
k

�
þ �a0k

�o ðA:4Þ

Akþ1 ¼ �z�B0
k � �bk ¼ � zkþ1½ þ 2dð þ 2khÞi��B0

k � �bk
akþ1 ¼ ðz� 2diÞ�B0

k � �Bk þ zðz� 2diÞ�B00
k þ ðz� 2diÞ�b0k

¼ zkþ1ð þ 2khiÞ�B0
k � �Bk þ zkþ1ð þ 2khiÞ zkþ1½ þ 2dð þ 2khÞi��B00

k þ zkþ1ð þ 2khiÞ�b0k
ðA:5Þ

FII ¼ 1 � m2ð ÞFI

fII ¼ m1 þ m2ð Þ zþ 2 h� dð Þi½ �F 0
I þ m1 þ 1ð ÞfI

�
ðA:6Þ

n1 ¼ zþ 2 hð � dÞi; z ¼ n1 � 2 hð � dÞi n1 ¼ �z

C1 ¼ m1 n1 � 2 h� dð Þi½ ��F 0
I þ �fI

n o
c1 ¼ �m2

�FI � m1 n1 n1 � 2 h� dð Þi½ ��F 00
I þ n1

�F 0
I þ �f 0

I

� �n o
8><
>:

ðA:7Þ

Gk ¼ 1 � m2ð ÞDk

gk ¼ m1 þ m2ð Þ gk þ 2khi þ 2 h� dð Þi½ �D0
k þ m1 þ 1ð Þdk

�
ðA:8Þ
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nk ¼ zþ 2khð � 2dÞi; z ¼ nk � 2khð � 2dÞi; nkþ1 ¼ �gk

Ckþ1 ¼ m1 nkþ1 � 2kh� 2dð Þi½ ��D0
k þ �dk

n o

ckþ1 ¼ �m2
�Dk � m1

nkþ1 � 2kh� 2dð Þi½ � nkþ1 � 2kh� 2dð Þi þ 2 h� dð Þi½ ��D00
k

þ nkþ1 � 2kh� 2dð Þi þ 2 h� dð Þi½ � �D0
k þ �d 0

k

� �
8><
>:

9>=
>;

8>>>>><
>>>>>:

ðA:9Þ

gk ¼ z� 2khi; z ¼ gk þ 2khi; gk ¼ �nk

Dk ¼ � gk þ 2khið Þ�C0
k � �ck

dk ¼ gk þ 2khi � 2idð Þ�C0
k � �Ck þ gk þ 2khið Þ gk þ 2khi � 2idð Þ�C00

k þ gk þ 2kih� 2idð Þ�c0k

8<
:

ðA:10Þ
A.1. Polynomial forms of stress functions

With the following definition:
Ak ¼ u0 þ u1 log zk þ
XN
j¼1

ujþ1

zjk
; ak ¼ v0 þ v1 log zk þ

XNþ1

j¼1

vjþ1

zjk
ðA:11Þ
by substituting into Eq. (A.4), we obtain
Bk ¼ m1 u1 þ v0ð Þ
(

þ �v1 log 1k þ
v2 � u2ð Þ � 2ikh�u1

1k
þ
XN
j¼2

vjþ1 � jujþ1

� �
þ 2i j� 1ð Þkh�uj
1jk

þ 2iNkh�uNþ1 þ �vNþ2

1Nþ1
k

)
ðA:12Þ

bk ¼ � m2�u0

�
þ m1�v1

�
� m2�u1 ln 1k þ

2m1i kh� hþ dð Þ�v1 � 2ikhm1�u1 þ m1�v2 � m1 þ m2ð Þ�u2

1k

þ 2m1�v3 � 4m1 þ m2ð Þ�u3 � 4m1 kh� hþ dð Þkh�u1 � 2im1kh v2 � 3u2ð Þ þ 2im1 h� dð Þ v2 � u2ð Þ
12
k

þ
XN
j¼3

jm1�vjþ1 � j2m1 þ m2ð Þ�ujþ1 � 2im1 kh� hþ dð Þ j� 1ð Þ�vj � j� 1ð Þ2�uj
h i

þ2im1j j� 1ð Þkh�uj þ 4m1 j� 1ð Þ j� 2ð Þ kh� hþ dð Þkh�uj�1

( )

1jk

þ
m1

N þ 1ð Þ�vNþ2 þ 4N N � 1ð Þ kh� hþ dð Þkh�uN
�2iN kh� hþ dð Þ �vNþ1 � N�uNþ1

h i( )
þ 2iN N þ 1ð Þkh�uNþ1

1Nþ1
k

þ
m1 4N N þ 1ð Þ kh� hþ dð Þkh�uNþ1 � 2i N þ 1ð Þ kh� hþ dð Þ�vNþ2

h i
1Nþ2
k

ðA:13Þ
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Substitute Eq. (A.11) into Eq. (A.3), we get
fk ¼ m1ð þ m2Þu1 þ m1ð þ 1Þv0 þ m1ð þ 1Þv1 ln zkð Þ þ 1

zk
2ikh m1ð½ þ m2Þu1 � m1ð þ m2Þu2 þ m1ð þ 1Þv2�

�
XN
j¼2

1

zjk
j m1ð
�

þ m2Þujþ1 � m1ð þ 1Þvjþ1 þ 2ikh jð � 1Þ m1ð þ m2Þuj
�
þ 1

zNþ1
k

m1ð½ þ 1ÞvNþ2

� 2ikhN m1ð þ m2ÞuNþ1� ðA:14Þ
Similarly, set:
Bk ¼ p0 þ p1 ln 1k þ
XN
j¼1

pjþ1

1jk
bk ¼ q0 þ q1 log 1k þ

XNþ1

j¼1

qjþ1

1jk
ðA:15Þ
then substitute the above equation into Eq. (A.5)
Akþ1 ¼ � p1 þ q0ð Þ � �q1 ln zkþ1ð Þ þ p2 � q2ð Þ � 2i khþ dð Þ�p1

zkþ1

þ
XN
j¼2

jpjþ1 � qjþ1

� �
þ 2i j� 1ð Þ khþ dð Þ�pj
zjkþ1

þ 2iN khþ dð Þ�pNþ1 � �qNþ2

zNþ1
kþ1

ðA:16Þ

akþ1 ¼ q1 � p0ð Þ � �p1 ln zkþ1 �
�q2 þ 2i khþ dð Þ�p1 � kh�q1

h i
zkþ1

þ
4 khþ dð Þkh�p1 � 2�q3 þ 3�p3 þ 2i 3khþ 2dð Þ�p2 � kh�q2

h i
z2kþ1

þ
XN
j¼3

2i j� 1ð Þ 2jkhþ jd � khð Þ�pj � kh�qj
h i

� 1 � j2ð Þ�pjþ1

�j�qjþ1 � 4kh khþ dð Þ j� 1ð Þ j� 2ð Þ�pj�1

8><
>:

9>=
>;

zjkþ1

þ 2iN 2N þ 1ð Þkhþ N þ 1ð Þd½ ��pNþ1 � 4khN N � 1ð Þ khþ dð Þ�pN � N þ 1ð Þ�qNþ2 � 2ikhN�qNþ1

zNþ1
kþ1

� 2ikh N þ 1ð Þ�qNþ2 þ 4N N þ 1ð Þkh khþ dð Þ�pNþ1

zNþ2
kþ1

ðA:17Þ
If set:
Dk ¼ u0 þ u1 log gk þ
XN
j¼1

ujþ1

gj
k

; dk ¼ v0 þ v1 log gk þ
XNþ1

j¼1

vjþ1

gj
k

ðA:18Þ
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then
Ckþ1 ¼ m1f u1 þ v0ð Þ þ �v1 log nkþ1 þ
v2 � u2ð Þ � 2i kh� dð Þ�u1

nkþ1

þ
XN
j¼2

vjþ1 � jujþ1

� �
þ 2i j� 1ð Þ kh� dð Þ�uj

nj
kþ1

þ 2iN kh� dð Þ�uNþ1 þ �vNþ2

nNþ1
kþ1

g ðA:19Þ

ckþ1 ¼ � m2�u0

�
þ m1�v1

�
� m2�u1 ln nkþ1

þ 2m1i kh� dð Þ v1 � u1ð Þ þ m1�v2 � 2i h� dð Þm1�v1 � m1 þ m2ð Þ�u2

nkþ1

þ 2m1�v3 � 4m1 þ m2ð Þ�u3 � 4m1 kh� dð Þ kh� hð Þ�u1 � 2im1 kh� hð Þ v2 � 3u2ð Þ4i h� dð Þm1�u2

n2
kþ1

þ
XN
j¼3

jm1�vjþ1 � j2m1 þ m2ð Þ�ujþ1 � 2im1 kh� hð Þ j� 1ð Þ�vj � j� 1ð Þj�uj
h i

þ2ijm1 j� 1ð Þ kh� hð Þ�uj þ 4m1 j� 1ð Þ j� 2ð Þ kh� dð Þ kh� hð Þ�uj�1

8<
:

9=
;

nj
kþ1

þ

m1

N þ 1ð Þ�vNþ2 þ 4N N � 1ð Þ kh� dð Þ kh� hð Þ�uN
�2iN kh� hð Þ �vNþ1 � N�uNþ1

h i
8<
:

9=
;2iN N þ 1ð Þ kh� dð Þ�uNþ1

nNþ1
kþ1

þ
m1 4N N þ 1ð Þ kh� dð Þ kh� hð Þ�uNþ1 � 2i N þ 1ð Þ kh� hð Þ�vNþ2

h i
nNþ2
kþ1

ðA:20Þ

gk ¼ m1ð þ m2Þu1 þ m1ð þ 1Þv0 þ m1ð þ 1Þv1 ln gkð Þ þ 1

gk
2i khð½ þ h� dÞ m1ð þ m2Þu1 � m1ð þ m2Þu2

þ m1ð þ 1Þv2� �
XN
j¼2

1

gj
k

i m1ð
�

þ m2Þujþ1 � m1ð þ 1Þvjþ1 þ 2i khð þ h� dÞ jð � 1Þ m1ð þ m2Þuj
�

þ 1

gNþ1
k

m1ð½ þ 1ÞvNþ2 � 2i khð þ h� dÞN m1ð þ m2ÞuNþ1� ðA:21Þ
Similarly, set:
Ck ¼ p0 þ p1 ln nk þ
XN
j¼1

pjþ1

nj
k

ck ¼ q0 þ q1 log nk þ
XNþ1

j¼1

qjþ1

nj
k

ðA:22Þ
then
Dk ¼ � p1 þ q0ð Þ � �q1 ln gkð Þ þ p2 � q2ð Þ � 2ikh�p1

gk

þ
XN
j¼2

jpjþ1 � qjþ1

� �
þ 2i j� 1ð Þkh�pj
gj
k

þ 2iNkh�pNþ1 � �qNþ2

gNþ1
k

ðA:23Þ
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dk ¼ q1 � p0ð Þ � �p1 ln gk �
�q2 þ 2i kh�p1 � kh� dð Þ�q1

h i
gk

þ
4 kh� dð Þkh�p1 � 2�q3 þ 3�p3 þ 2i 3kh� dð Þ�p2 � kh� dð Þ�q2

h i
g2
k

þ
XN
j¼3

2i j� 1ð Þ 2jkh� jd � khþ dð Þ�pj � kh� dð Þ�qj
h i

� 1 � j2ð Þ�pjþ1

�j�qjþ1 � 4kh kh� dð Þ j� 1ð Þ j� 2ð Þ�pj�1

8<
:

9=
;

gj
k

þ

2iN N þ 1ð Þ 2kh� dð Þ � kh� dð Þ½ ��pNþ1 � 4khN N � 1ð Þ kh� dð Þ�pN
� N þ 1ð Þ�qNþ2 � 2i kh� dð ÞN�qNþ1

( )

gNþ2
k

� 2i kh� dð Þ N þ 1ð Þ�qNþ2 þ 4N N þ 1ð Þkh kh� dð Þ�pNþ1

gNþ2
k

ðA:24Þ
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